Menu
Open source

Deploy on Kubernetes with Tanka

Using this deployment guide, you can deploy Tempo to Kubernetes using a Jsonnet library and Grafana Tanka to create a development cluster or sand-boxed environment. This procedure uses MinIO to provide object storage regardless of the cloud platform or on-premise storage you use. In a production environment, you can use your cloud provider’s object storage service to avoid the operational overhead of running object storage in production.

To set up Tempo using Kubernetes with Tanka, you need to:

  1. Configure Kubernetes and install Tanka
  2. Set up the Tanka environment
  3. Install libraries
  4. Deploy MinIO object storage
  5. Optional: Enable metrics-generator
  6. Deploy Tempo with the Tanka command

Note

This configuration is not suitable for a production environment but can provide a useful way to learn about Tempo.

Before you begin

To deploy Tempo to Kubernetes with Tanka, you need:

  • A Kubernetes cluster with at least 40 CPUs and 46GB of memory for the default configuration. Small ingest or query volumes could use a far smaller configuration.
  • kubectl (version depends upon the API version of Kubernetes in your cluster)

Configure Kubernetes and install Tanka

Follow these steps to configure Kubernetes and install Tanka.

  1. Create a new directory for the installation, and make it your current working directory:

    bash
    mkdir tempo
    cd tempo
  2. Create a Kubernetes namespace. You can replace the namespacetempo in this example with a name of your choice.

    bash
    kubectl create namespace tempo
  3. Install Grafana Tanka; refer to Installing Tanka.

  4. Install jsonnet-bundler; refer to the jsonnet-bundler README.

Set up the Tanka environment

Tanka requires the current context for your Kubernetes environment.

  1. Check the current context for your Kubernetes cluster and ensure it’s correct:

    bash
    kubectl config current-context
  2. Initialize Tanka. This will use the current Kubernetes context:

    bash
    tk init --k8s=false
    tk env add environments/tempo
    tk env set environments/tempo \
     --namespace=tempo \
     --server-from-context=$(kubectl config current-context)

Install libraries

Install the k.libsonnet, Jsonnet, and Memcachd libraries.

  1. Install k.libsonnet for your version of Kubernetes:

    bash
    mkdir -p lib
    export K8S_VERSION=1.25
    jb install github.com/jsonnet-libs/k8s-libsonnet/${K8S_VERSION}@main
    cat <<EOF > lib/k.libsonnet
    import 'github.com/jsonnet-libs/k8s-libsonnet/${K8S_VERSION}/main.libsonnet'
    EOF
  2. Install the Tempo Jsonnet library and its dependencies.

    bash
    jb install github.com/grafana/tempo/operations/jsonnet/microservices@main
  3. Install the Memcached library and its dependencies.

    bash
    jb install github.com/grafana/jsonnet-libs/memcached@master

Deploy MinIO object storage

MinIO is an open source Amazon S3-compatible object storage service that is freely available and easy to run on Kubernetes.

  1. Create a file named minio.yaml and copy the following YAML configuration into it. You may need to remove/modify the storageClassName depending on your Kubernetes platform. GKE, for example, may not support local-path name but may support another option such as standard.

    yaml
    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      # This name uniquely identifies the PVC. Will be used in deployment below.
      name: minio-pv-claim
      labels:
        app: minio-storage-claim
    spec:
      # Read more about access modes here: http://kubernetes.io/docs/user-guide/persistent-volumes/#access-modes
      accessModes:
        - ReadWriteOnce
      storageClassName: local-path
      resources:
        # This is the request for storage. Should be available in the cluster.
        requests:
          storage: 50Gi
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: minio
    spec:
      selector:
        matchLabels:
          app: minio
      strategy:
        type: Recreate
      template:
        metadata:
          labels:
            # Label is used as selector in the service.
            app: minio
        spec:
          # Refer to the PVC created earlier
          volumes:
            - name: storage
              persistentVolumeClaim:
                # Name of the PVC created earlier
                claimName: minio-pv-claim
          initContainers:
            - name: create-buckets
              image: busybox:1.28
              command:
                - "sh"
                - "-c"
                - "mkdir -p /storage/tempo-data"
              volumeMounts:
                - name: storage # must match the volume name, above
                  mountPath: "/storage"
          containers:
            - name: minio
              # Pulls the default Minio image from Docker Hub
              image: minio/minio:latest
              args:
                - server
                - /storage
                - --console-address
                - ":9001"
              env:
                # Minio access key and secret key
                - name: MINIO_ACCESS_KEY
                  value: "minio"
                - name: MINIO_SECRET_KEY
                  value: "minio123"
              ports:
                - containerPort: 9000
                - containerPort: 9001
              volumeMounts:
                - name: storage # must match the volume name, above
                  mountPath: "/storage"
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: minio
    spec:
      type: ClusterIP
      ports:
        - port: 9000
          targetPort: 9000
          protocol: TCP
          name: api
        - port: 9001
          targetPort: 9001
          protocol: TCP
          name: console
      selector:
        app: minio
  2. Run the following command to apply the minio.yaml file:

    bash
    kubectl apply --namespace tempo -f minio.yaml
  3. To check that MinIO is correctly configured, sign in to MinIO and verify that a bucket has been created. Without these buckets, no data will be stored.

    1. Port-forward MinIO to port 9001:

      bash
       kubectl port-forward --namespace tempo service/minio 9001:9001
    2. Navigate to the MinIO admin bash using your browser: http://localhost:9001. The sign-in credentials are username minio and password minio123.

    3. Verify that the Buckets page lists tempo-data.

  4. Configure the Tempo cluster using the MinIO object storage by updating the contents of the environments/tempo/main.jsonnet file by running the following command:

    jsonnet
    cat <<EOF > environments/tempo/main.jsonnet
    // The jsonnet file used to generate the Kubernetes manifests.
    local tempo = import 'microservices/tempo.libsonnet';
    local k = import 'ksonnet-util/kausal.libsonnet';
    local container = k.core.v1.container;
    local containerPort = k.core.v1.containerPort;
    
    tempo {
        _images+:: {
            tempo: 'grafana/tempo:latest',
            tempo_query: 'grafana/tempo-query:latest',
        },
    
        tempo_distributor_container+:: container.withPorts([
                containerPort.new('jaeger-grpc', 14250),
                containerPort.new('otlp-grpc', 4317),
            ]),
    
        _config+:: {
            namespace: 'tempo',
    
            compactor+: {
                replicas: 1,
            },
            query_frontend+: {
                replicas: 2,
            },
            querier+: {
                replicas: 3,
            },
            ingester+: {
                replicas: 3,
                pvc_size: '10Gi',
                pvc_storage_class: 'standard',
            },
            distributor+: {
                replicas: 3,
                receivers: {
                    jaeger: {
                        protocols: {
                            grpc: {
                                endpoint: '0.0.0.0:14250',
                            },
                        },
                    },
                    otlp: {
                        protocols: {
                            grpc: {
                                endpoint: '0.0.0.0:4317',
                            },
                        },
                    },
                },
            },
    
            metrics_generator+: {
                replicas: 1,
                ephemeral_storage_request_size: '10Gi',
                ephemeral_storage_limit_size: '11Gi',
                pvc_size: '10Gi',
                pvc_storage_class: 'standard',
            },
            memcached+: {
                replicas: 3,
            },
    
            bucket: 'tempo-data',
            backend: 's3',
        },
    
        tempo_config+:: {
            storage+: {
                trace+: {
                    s3: {
                        bucket: $._config.bucket,
                        access_key: 'minio',
                        secret_key: 'minio123',
                        endpoint: 'minio:9000',
                        insecure: true,
                    },
                },
            },
            metrics_generator+: {
                processor: {
                    span_metrics: {},
                    service_graphs: {},
                },
    
                registry+: {
                    external_labels: {
                        source: 'tempo',
                    },
                },
            },
            overrides+: {
                metrics_generator_processors: ['service-graphs', 'span-metrics'],
            },
        },
    
        tempo_ingester_container+:: {
          securityContext+: {
            runAsUser: 0,
          },
        },
    
        local statefulSet = $.apps.v1.statefulSet,
        tempo_ingester_statefulset+:
            statefulSet.mixin.spec.withPodManagementPolicy('Parallel'),
    }
    EOF

Optional: Enable metrics-generator

In the preceding configuration, metrics generation is enabled. However, you still need to specify where to send the generated metrics data. If you’d like to remote write these metrics onto a Prometheus compatible instance (such as Grafana Cloud metrics or a Mimir instance), you’ll need to include the configuration block below in the metrics_generator section of the tempo_config block above (this assumes basic auth is required, if not then remove the basic_auth section). You can find the details for your Grafana Cloud metrics instance for your Grafana Cloud account by using the Cloud Portal.

jsonnet
storage+: {
    remote_write: [
        {
            url: 'https://<urlForPrometheusCompatibleStore>/api/v1/write',
            send_exemplars: true,
            basic_auth: {
                username: '<username>',
                password: '<password>',
            },
        }
    ],
},

Note: Enabling metrics generation and remote writing them to Grafana Cloud Metrics will produce extra active series that could potentially impact your billing. For more information on billing, refer to Billing and usage. For more information on metrics generation, refer Metrics-generator in the Tempo documentation.

Optional: Reduce component system requirements

Smaller ingestion and query volumes could allow the use of smaller resources. If you wish to lower the resources allocated to components, then you can do this via a container configuration. For example, to change the CPU and memory resource allocation for the ingesters.

To change the resources requirements, follow these steps:

  1. Open the environments/tempo/main.jsonnet file.
  2. Add a new configuration block for the appropriate component (in this case, the ingesters):
    jsonnet
    tempo_ingester_container+:: {
        resources+: {
            limits+: {
                cpu: '3',
                memory: '5Gi',
            },
            requests+: {
                cpu: '200m',
                memory: '2Gi',
            },
        },
    },
  3. Save the changes to the file.

Note

Lowering these requirements can impact overall performance.

Deploy Tempo using Tanka

  1. Deploy Tempo using the Tanka command:
    bash
    tk apply environments/tempo/main.jsonnet

Note

If the ingesters don’t start after deploying Tempo with the Tanka command, this may be related to the storage class selected for the Write Ahead Logs. If this is the case, add an appropriate storage class to the ingester configuration. For example, to add a standard instead of fast storage class, add the following to the config (not tempo_config) section in the previous step:

bash
  ingester+: {
    pvc_storage_class: 'standard',
  },

Next steps

The Tempo instance will now accept the two configured trace protocols (OTLP gRPC and Jaeger gRPC) via the distributor service at distributor.tempo.svc.cluster.local on the relevant ports:

  • OTLP gRPC: 4317
  • Jaeger gRPC: 14250

You can query Tempo using the query-frontend.tempo.svc.cluster.local service on port 3200 for Tempo queries or port 16686 or 16687 for Jaeger type queries.

Now that you’ve configured a Tempo cluster, you’ll need to get data into it. Read the Set up a test app for instructions.